مرکز دانلود پروژه ها و رساله های دانشجویی ایران

آخرین مطالب

برای دریافت پروژه اینجا کلیک کنید

توجه : این پروژه به صورت فایل PDF (پی دی اف) ارائه میگردد

 دانلود بررسی و تعیین استراتژی های مدیریت ارتباط با مشتری در بانک ها و تقسیم بندی مشتریان فایل ورد (word) دارای 154 صفحه می باشد و دارای تنظیمات و فهرست کامل در PDF می باشد و آماده پرینت یا چاپ است

فایل پی دی اف دانلود بررسی و تعیین استراتژی های مدیریت ارتباط با مشتری در بانک ها و تقسیم بندی مشتریان فایل ورد (word)   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

Segmentation of the Customer's
Mellat Bank in Arak and
Determining (CRM) Strategies for each Segment

Abstract:
Meticulous recognition of customers, especially loyal and profitable ones and
customer's Relationship Management (CRM) to realize profitability have become
and indispensable part of required accoutrements for finance and credit institutes,
especially the banks. One approach applied to achieve this goal is using
segmentation technique to analyze the customer's behavior considering criteria
like loyalty and profitability.
Recency, Frequency Monetary (RFM) model is one of the most widely used
models for segmentation. RFM's optimized model, weighted RFM is in the
limelight.
This research is a case study conducted in 19 branches of Mellat bank in
Arak. In the first step, the variables of RFM model are extracted. In the next step,
applying AHP technique, the weights of respective variables are gauged.
Advancing the research, enjoying the k-means algorithm, customers are clustered
on the basis of weighted RFM. According to the results, seven clusters of
customers are clustered on the basis of weighted RFM. According to the results,
seven clusters of customers are identified. For each cluster, customer's loyalty is
calculated using comprehensive ranking approach. By ranking the loyalty of each
cluster, the most loyal and consequently the most profitable customers are
catalogued. The findings are rectified by the professionals and managers of Mellat
bank using expert judgment technique.

منابع لاتین
1. Alencar, A., Riberio, E., Ferreira, A., Schmitz, E., Lima, P., Manso, F.(2006)
'Optimized RFM analysis', Journal of Marketing Intelligence & Planning,
24:2.
2. Alfansi, L., sergeant, A. (2000), Market Segmentation in the Indonesian
banking Sector, International journal of Bank Marketing, 18/2, 64-74.
3. Ashridge Group (2006) Customer Relationship Management, USA, Ashridge
Group Publishing.
4. A. Mc carty, J., Hastak, M. (2007), segmentation approaches in data-mining,
journal of Business Research, 60, 656-662.
5. Baran, R., Galka, R., Strunk, D.(2008), 'Principles of Customer Relationship
Managenent', Thomson South- Western Pub, p.244.
6. Berson, A., Smith, S., Theatling, K., (2004) Building Data Mining Application
For CRM (3th edn), New York, McGraw-Hill Pub.
7. Berson, A., Smith, S., Theatling, K., (2001) Building Data Mining Application
For CRM (3th edn), New York, McGraw-Hill Pub, Chapter 13.
8. Braglia, M., Garmignani, G., Ferosolini, M. (2006), AHP-basede valuation of
CMMS software, Journal of Manufacturing Technology Management, 17:5,
585-602.
9. Chalmeta, R. (2006), Methodology for customer relationship management, the
journal of systems and software, 79, 1015-1024.
10. Chan, H., Chai, c.(2008), Interlligent Value-based customer segmentation
method for campaign management, journal of Expert systems wwith
APPlications, 34, 2754-2762.
11. Cheng, C., Chan, Y. (2009), Classifying the segmentation of customer value
via RFM model and RS theory, Journal of Expert systems with Applications,
36, 4176-4184.
12. Chen, Y., Kuo, M., Wu, S., Tang, K. (2009), Discovering recency, frequency,
and monetary (RFM) sequential patterns from customers' purchasing data,
Journal of Electronic commerce Research and Applications, 8, 241-251.
13. Chris Rygielski J-CW, Davi, C. (2002), Data mining techniques for customer
Relationship Management, Technology In Society, 11:3, 483-502.
14. Dunham, M.,(2002) Data Mining Introductory and Advanced Topics, Upper
Saddle River, Prentice Hall Pub.
15. Durkin M.g. (2004), Insearch of the Internet – banking customers,
International journal of Bank Marketing, 22:7, 484-503.
16. Fraley, C and Raftery, E A. How Many Clusters/ Which Clustering Method?
Answers Via Model-Based Cluster Analysis s.l. :Department of Statistics
University of Washington, 1998.
17. Han, J., Kamber, M.(2001) Data Mining Concepts and Techniques, New York,
Morgan Kaufman Pub.
18. Kim, S., Soojung, T., Ho Suh, E., Seok Hwang, H., (2006), Customer
segmentation And strategy development based on Customer live time Value,
Journal of Expert Systems with Applications, 31, 101-107.
19. Kohavi, Ron and Parekh, Rajesh. Visualizing RFM Segmentation. April
22.2004 SIAM: Society for Industrial and Applied Mathematics.
20. Marcus, C. (1998), A practical yet meaningful approach to customer
segmentation, journal of consum Mark, 15, 494-501.
21. Machauer, A., Morgner, S., (2001), Segmentation of bank customers by
expected benefits and attitudes, International Journal of Bank Marketing, 19,
6-17.
22. Maenpaa, K., (2006), Clustering the consumers on the bassis of their
perceptions of the Internet banking services, Journal of, 16, 304-332.
23. McCarty John., Hastak Manoj. (2007) 'segmentation approaches in datamining:
Acomparison of RFM, CHAID, and logistic regression' , journal of
Business Research, 656-662.
24. Neaga, E., Harding, J. (2005), An enterprise modeling and integration frame
work based on knowledge discovery and data mining, International Journal of
production Research, 43: 6, 1089-1108.
25. Saglam, B., sibel salman, F., Sayin, S., (2006), a mixed-integer programming
approach to the clustering problem with an application in customer
Segmentation, European journal of operational Research, 173, 866-879.
26. Seybold, P., Marshak, R., Lewis, J.(2001) The Customer Revolution, New
York, Crown Business, NY.
27. Siomkos, G., Tsiames, L. (2006), Analytical CRM technologies in financial
services institutions, International journal of Financial Services Management,
1, 216-229.
28. Suh, E. H., Noh, K.C., Suh, C.K. (1999), Customer list segmentation using the
combined response model, journal of Expert systems with applications, 17, 89-
97.
29. Tsai, C. – Y., Chiu, C. (2004), A purchase-based market segmentation
methodology, Journal of Expert System with Application, 27, 265-276.
30. Verhoef, p., Spring, p., Hoekstra, J., Leeflang, P. (2002), The commercial use
of segmentation and predictive modeling techniques for data base marketing in
the Netherlands, Journal of Decision support systems, 34, 471-481.
31. Yang Ax. (2004), How to develop new approaches to RFM segmentation, the
Journal of Target Meas anal Mark, 50-60.
32. Ye, N. (2003) The Handbook of Data Mining, London, Lawrence Erlbaun
Association (LEA) Pubishing.

1- Customer Segmentation
2- Clustering
3- Data Mining
4- Customer Loyalty
5- Customer Relationship Management (CRM)
6- Analytical CRM
7- Market Segmentation
8- K - means
9- W RFM
10- AHP


برای دریافت پروژه اینجا کلیک کنید
  • علی مح

نظرات  (۰)

هیچ نظری هنوز ثبت نشده است

ارسال نظر

ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی
بی پیپر | دانشجو یار | مرکز پایان نامه های فردوسی | نشر ایلیا | پی سی دانلود | مرکز پروژه های دانشجویی | دانشجو | مرکز دانلود | پایانامه دانشجویی | جزوه های درسی | دانلود فایل ورد و پاورپوینت | پایان نامه ها | جزوات درسی | پروژه های درسی | ایران پروژه | پروژه دات کام | دانلود رایگان فایل |